

interferences

interferences is a set of tools for analysing inorganic mass spectra and
interference patterns.

	On this site you can browse the API, or look
through some of the usage examples.

	There’s also a quick installation guide, a list of
recent changes and some notes on
where the project is heading in the near future.

	If you’re interested in contributing to the project,
there are many potential avenues, whether you’re experienced with Python or not.

Note

This documentation is a work in progress and is updated regularly. Contact
the maintainer with any specific questions/requests.

Installation

`bash
pip install git+git://github.com/morganjwilliams/interferences.git@develop#egg=interferences
`

Upgrading interferences

`bash
pip install --upgrade git+git://github.com/morganjwilliams/interferences.git@develop#egg=interferences
`

Optional Dependencies

Optional dependencies (dev, docs) can be specified during pip installation.

`bash
pip install git+git://github.com/morganjwilliams/interferences.git@develop#egg=interferences[docs]
`

Examples

This example gallery includes a variety of examples for using interferences
which you can copy, download and alter, or run on Binder.

[image: Spectra : stemplot]

Spectra : stemplot

[image: Building Ion Tables]

Building Ion Tables

[image: Spectra : spectra]

Spectra : spectra

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Spectra : stemplot

Once you have a table, one way to visualise how the ion peaks are distributed is to use
stemplot(), which you can also access from your
dataframe using the mz accessor:

import matplotlib.pyplot as plt
from interferences import build_table
from pyrolite.geochem.ind import REE

Let’s build a table to play with first, focusing on potential interferences for
thulium (Tm), which has only one stable isotope (\(\mathrm{^{169}Tm}\)),
and is susceptible to interferences, especially for quadrupole ICP-MS:

window = ("Tm[169]", 0.1)
df = build_table(REE() + ["O", "N", "H"], window=window, max_atoms=2)

Out:

 0%| | 0/113 [00:00<?, ?it/s]
 : 0%| | 0/113 [00:00<?, ?it/s]
Gd @ 14 rows : 0%| | 0/113 [00:00<?, ?it/s]
Tb @ 2 rows : 0%| | 0/113 [00:00<?, ?it/s]
Dy @ 14 rows : 0%| | 0/113 [00:00<?, ?it/s]
Ho @ 2 rows : 0%| | 0/113 [00:00<?, ?it/s]
Er @ 12 rows : 0%| | 0/113 [00:00<?, ?it/s]
Tm @ 2 rows : 0%| | 0/113 [00:00<?, ?it/s]
Yb @ 14 rows : 0%| | 0/113 [00:00<?, ?it/s]
Lu @ 4 rows : 0%| | 0/113 [00:00<?, ?it/s]
La-O @ 12 rows : 0%| | 0/113 [00:00<?, ?it/s]
La-N @ 8 rows : 0%| | 0/113 [00:00<?, ?it/s]
Ce-O @ 24 rows : 0%| | 0/113 [00:00<?, ?it/s]
Ce-N @ 16 rows : 0%| | 0/113 [00:00<?, ?it/s]
Pr-O @ 6 rows : 0%| | 0/113 [00:00<?, ?it/s]
Pr-N @ 4 rows : 0%| | 0/113 [00:00<?, ?it/s]
Nd-O @ 42 rows : 0%| | 0/113 [00:00<?, ?it/s]
Nd-N @ 28 rows : 0%| | 0/113 [00:00<?, ?it/s]
Sm-O @ 42 rows : 0%| | 0/113 [00:00<?, ?it/s]
Sm-N @ 28 rows : 0%| | 0/113 [00:00<?, ?it/s]
Eu-O @ 12 rows : 0%| | 0/113 [00:00<?, ?it/s]
Eu-O @ 12 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Eu-H @ 8 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Eu-N @ 8 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Gd-O @ 42 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Gd-H @ 28 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Gd-N @ 28 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Gd-Sm @ 98 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Gd-Eu @ 28 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Gd-Gd @ 56 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Tb-O @ 6 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Tb-H @ 4 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Tb-N @ 4 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Tb-Sm @ 14 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Tb-Eu @ 4 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Tb-Gd @ 14 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Tb-Tb @ 2 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Dy-O @ 42 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Dy-H @ 28 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Dy-N @ 28 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Dy-Nd @ 98 rows : 17%|#6 | 19/113 [00:00<00:00, 183.34it/s]
Dy-Nd @ 98 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Dy-Sm @ 98 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Dy-Eu @ 28 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Dy-Gd @ 98 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Dy-Tb @ 14 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Dy-Dy @ 56 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-O @ 6 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-H @ 4 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-N @ 4 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-Ce @ 8 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-Pr @ 2 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-Nd @ 14 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-Sm @ 14 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-Eu @ 4 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-Gd @ 14 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-Tb @ 2 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-Dy @ 14 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Ho-Ho @ 2 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Er-O @ 36 rows : 34%|###3 | 38/113 [00:00<00:00, 175.51it/s]
Er-O @ 36 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-H @ 24 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-N @ 24 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-La @ 24 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-Ce @ 48 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-Pr @ 12 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-Nd @ 84 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-Sm @ 84 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-Eu @ 24 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-Gd @ 84 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-Tb @ 12 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-Dy @ 84 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-Ho @ 12 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Er-Er @ 42 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Tm-O @ 6 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Tm-H @ 4 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Tm-N @ 4 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Tm-La @ 4 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Tm-Ce @ 8 rows : 50%|####9 | 56/113 [00:00<00:00, 175.60it/s]
Tm-Ce @ 8 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Tm-Pr @ 2 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Tm-Nd @ 14 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Tm-Sm @ 14 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Tm-Eu @ 4 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Tm-Gd @ 14 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Tm-Tb @ 2 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Tm-Dy @ 14 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Tm-Ho @ 2 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Tm-Er @ 12 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Tm-Tm @ 2 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Yb-H @ 28 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Yb-La @ 28 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Yb-Ce @ 56 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Yb-Pr @ 14 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Yb-Nd @ 98 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Yb-Sm @ 98 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Yb-Eu @ 28 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Yb-Gd @ 98 rows : 65%|######5 | 74/113 [00:00<00:00, 172.37it/s]
Yb-Gd @ 98 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Yb-Tb @ 14 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Yb-Dy @ 98 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Yb-Ho @ 14 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Yb-Er @ 84 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Yb-Tm @ 14 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Yb-Yb @ 56 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-H @ 8 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-La @ 8 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Ce @ 16 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Pr @ 4 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Nd @ 28 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Sm @ 28 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Eu @ 8 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Gd @ 28 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Tb @ 4 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Dy @ 28 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Ho @ 4 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Er @ 24 rows : 81%|########1 | 92/113 [00:00<00:00, 171.63it/s]
Lu-Er @ 24 rows : 97%|#########7| 110/113 [00:00<00:00, 171.36it/s]
Lu-Tm @ 4 rows : 97%|#########7| 110/113 [00:00<00:00, 171.36it/s]
Lu-Yb @ 28 rows : 97%|#########7| 110/113 [00:00<00:00, 171.36it/s]
Lu-Lu @ 6 rows : 97%|#########7| 110/113 [00:00<00:00, 171.36it/s]
Lu-Lu @ 6 rows : 100%|##########| 113/113 [00:00<00:00, 173.21it/s]

From this table, we can create our plot, here limiting the labelling to the
five peaks with highest estimated intensity:

ax = df.mz.stemplot(window=window, max_labels=5, figsize=(8, 4))
plt.show()

[image: stemplot]Out:

/home/docs/checkouts/readthedocs.org/user_builds/interferences/envs/latest/lib/python3.7/site-packages/numpy/core/fromnumeric.py:43: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
 result = getattr(asarray(obj), method)(*args, **kwds)

While the production of the doubly-charged double-REE ions is likely less significant
than shown here (no penalisation for higher charges/larger molecules is included
in generating these spectra), we can see that \(\mathrm{^{153}Eu^{16}O}\) could
be a potential interference issue if the conditions are relatively oxidised,
and if there’s sufficient hydrogen, \(\mathrm{^{168}Er^{1}H}\) may similarly
contribute to problems.

Notably, there’s a number of other potential ions in vicinity of
\(\mathrm{^{169}Tm}\). However, most of these are doubly-charged double-REE ions.
Given the highly-correlated nature of the REE, these may not pose as significant
issues for standardisation as the hydride and oxide ions.

Total running time of the script: (0 minutes 7.653 seconds)

[image: Launch binder]
 [https://mybinder.org/v2/gh/morganjwilliams/interferences/develop?filepath=docs/source/examples/stemplot.ipynb]

Download Python source code: stemplot.py

Download Jupyter notebook: stemplot.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Building Ion Tables

interferences core funciton is to generate, filter and visualise tables
of isotope-specified small inorganic ionic molecules. This example demonstrates how
to build a small table of ions, and some of the options available. Note that as
interferences is largely built around pandas [https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas], you can expect to be
working with DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] objects most of the time.

import pandas as pd
from interferences.table import build_table

In the simplest case, where you have a list of elments you want to find viable set of
ions which they may produce, you can simply specify these elements in a call to
build_table():

df = build_table(["Ca", "O", "Ar", "H"])
df.info()

Out:

 0%| | 0/34 [00:00<?, ?it/s]
 : 0%| | 0/34 [00:00<?, ?it/s]
O @ 6 rows : 0%| | 0/34 [00:00<?, ?it/s]
H @ 4 rows : 0%| | 0/34 [00:00<?, ?it/s]
Ca @ 12 rows : 0%| | 0/34 [00:00<?, ?it/s]
Ar @ 6 rows : 0%| | 0/34 [00:00<?, ?it/s]
O-O @ 12 rows : 0%| | 0/34 [00:00<?, ?it/s]
H-O @ 12 rows : 0%| | 0/34 [00:00<?, ?it/s]
H-H @ 6 rows : 0%| | 0/34 [00:00<?, ?it/s]
Ca-O @ 36 rows : 0%| | 0/34 [00:00<?, ?it/s]
Ca-H @ 24 rows : 0%| | 0/34 [00:00<?, ?it/s]
Ca-Ca @ 42 rows : 0%| | 0/34 [00:00<?, ?it/s]
Ar-O @ 18 rows : 0%| | 0/34 [00:00<?, ?it/s]
Ar-H @ 12 rows : 0%| | 0/34 [00:00<?, ?it/s]
Ar-Ca @ 36 rows : 0%| | 0/34 [00:00<?, ?it/s]
Ar-Ar @ 12 rows : 0%| | 0/34 [00:00<?, ?it/s]
O-O-O @ 20 rows : 0%| | 0/34 [00:00<?, ?it/s]
H-O-O @ 24 rows : 0%| | 0/34 [00:00<?, ?it/s]
H-H-O @ 18 rows : 0%| | 0/34 [00:00<?, ?it/s]
H-H-H @ 8 rows : 0%| | 0/34 [00:00<?, ?it/s]
H-H-H @ 8 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ca-O-O @ 72 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ca-H-O @ 72 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ca-H-H @ 36 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ca-Ca-O @ 126 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ca-Ca-H @ 84 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ca-Ca-Ca @ 112 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-O-O @ 36 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-H-O @ 36 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-H-H @ 18 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-Ca-O @ 108 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-Ca-H @ 72 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-Ca-Ca @ 126 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-Ar-O @ 36 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-Ar-H @ 24 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-Ar-Ca @ 72 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-Ar-Ar @ 20 rows : 53%|#####2 | 18/34 [00:00<00:00, 178.23it/s]
Ar-Ar-Ar @ 20 rows : 100%|##########| 34/34 [00:00<00:00, 151.69it/s]
<class 'pandas.core.frame.DataFrame'>
Index: 1344 entries, H[1]++ to Ca[48]Ca[48]Ca[48]+
Data columns (total 4 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 m_z 1344 non-null float64
 1 mass 1344 non-null float64
 2 charge 1344 non-null int64
 3 iso_product 1344 non-null float64
dtypes: float64(3), int64(1)
memory usage: 52.5+ KB

Note that the table is indexed by the ions themselves, with the respective mass/charge
ratio found under the m_z column. Even with a small set of elements, with the
combination of isotopes, we’ve generated a fair number of potential ions:

df.index.size

Out:

1344

As this is probably more ions than you want to consider, let’s narrow the foucs
using a mass window (here for \(39 \ge m/z \le 41\)):

df = build_table(["Ca", "O", "Ar", "H"], window=(39, 41))
df.index.size

Out:

48

While you can use m/z ratios if you know them specifically, it’s likely more useful
to specify an ion mass and a mass-window either side, which you can do as follows:

df = build_table(["Ca", "O", "Ar", "H"], window=("Ca[40]", 0.01))
df.index.size

Out:

6

By default, interferences builds ions for molecules with up to three atoms
with ionic charges of either +1 or +2 (note the sign of the charge is largely
irrelevant, given a mass spectrometer will be set up for either positive or negative
ions). If you wanted to use different parameters to generate a table, you can use the
max_atoms and charges keyword arguemnts:

df = build_table(["Ca", "O", "Ar", "H"], charges=[1], max_atoms=2)
df.index.size

Out:

119

Also, to save time for futher computation, interferences uses a local
HDFStore to cache results. You can disable this behaviour and gain some speed
if you’re generating one-off large tables by using cache_results=False:

df = build_table(["Ca", "O", "Ar", "H"], cache_results=False)

If you’re finding that you end up with a table which includes minor ions which
likely have too low an isotopic abundance to influence results, you can
use the threshold keyword argument to adjust the isotopic abundance threshold for
isotopes used to build the table. Note that these won’t be added to the cached
reference:

df = build_table(["N", "K"], threshold=0.5)
df.index.size

Out:

 0%| | 0/9 [00:00<?, ?it/s]
 : 0%| | 0/9 [00:00<?, ?it/s]
N @ 2 rows : 0%| | 0/9 [00:00<?, ?it/s]
K @ 4 rows : 0%| | 0/9 [00:00<?, ?it/s]
N-N @ 2 rows : 0%| | 0/9 [00:00<?, ?it/s]
K-N @ 4 rows : 0%| | 0/9 [00:00<?, ?it/s]
K-K @ 6 rows : 0%| | 0/9 [00:00<?, ?it/s]
N-N-N @ 2 rows : 0%| | 0/9 [00:00<?, ?it/s]
K-N-N @ 4 rows : 0%| | 0/9 [00:00<?, ?it/s]
K-K-N @ 6 rows : 0%| | 0/9 [00:00<?, ?it/s]
K-K-K @ 8 rows : 0%| | 0/9 [00:00<?, ?it/s]
K-K-K @ 8 rows : 100%|##########| 9/9 [00:00<00:00, 194.34it/s]

35

Finally, if you’re likely to do some plotting with the ion data, you can specify
this using the add_labels keyword argument, which will add nicely formatted labels
comapatible with matplotlib [https://matplotlib.org/stable/index.html#module-matplotlib]:

df = build_table(["Ca", "O", "Ar", "H"], add_labels=True)

Total running time of the script: (0 minutes 3.216 seconds)

[image: Launch binder]
 [https://mybinder.org/v2/gh/morganjwilliams/interferences/develop?filepath=docs/source/examples/table.ipynb]

Download Python source code: table.py

Download Jupyter notebook: table.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Spectra : spectra

If you would like something that looks similar to your peak scans, you can use
spectra(), which you can also access from your
dataframe using the mz accessor:

import matplotlib.pyplot as plt
from interferences import build_table
from pyrolite.geochem.ind import REE

Here build a table based on some low-mass isotopes, and focus in on the BO+ ion:

window = ("B[10]O[16]", 0.05)
df = build_table(["C", "B", "N", "O"], window=window, max_atoms=2)

Out:

 0%| | 0/6 [00:00<?, ?it/s]
 : 0%| | 0/6 [00:00<?, ?it/s]
N-N @ 6 rows : 0%| | 0/6 [00:00<?, ?it/s]
C-O @ 12 rows : 0%| | 0/6 [00:00<?, ?it/s]
C-N @ 8 rows : 0%| | 0/6 [00:00<?, ?it/s]
C-C @ 6 rows : 0%| | 0/6 [00:00<?, ?it/s]
B-O @ 12 rows : 0%| | 0/6 [00:00<?, ?it/s]
B-N @ 8 rows : 0%| | 0/6 [00:00<?, ?it/s]
B-N @ 8 rows : 100%|##########| 6/6 [00:00<00:00, 186.34it/s]

From this table, we can create our plot, limiting the labelling to the
five peaks with highest estimated intensity. Note we should specify the mass
resolution for the simulated peaks:

ax = df.mz.spectra(window=window, mass_resolution=3000, max_labels=5, figsize=(8, 4))
plt.show()

[image: spectraplot]Out:

/home/docs/checkouts/readthedocs.org/user_builds/interferences/envs/latest/lib/python3.7/site-packages/numpy/core/fromnumeric.py:43: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
 result = getattr(asarray(obj), method)(*args, **kwds)

Thesse peaks better show the ‘interference’ aspect of these ions at relatively low
mass resolution, but are notably unnaturally square. To simulate some shoulders for
your peaks (i.e. a non-zero-width image of your source, and a signal limited by a
collector slit or similar) you can specify a ratio for the image_ratio keyword
argument. Here we explore the effect this parameter with a few different values
(0, <1, 1, and >1):

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(8, 8))
for a, ratio in zip(ax.flat, [0, 0.2, 1, 1.5]):
 df.mz.spectra(
 ax=a, window=window, mass_resolution=3000, image_ratio=ratio, max_labels=5
)
 a.annotate(
 "ratio={:.1f}".format(ratio),
 xy=(0.9, 0.9),
 xycoords=a.transAxes,
 ha="right",
 fontsize=12,
)
plt.show()

[image: spectraplot]Total running time of the script: (0 minutes 24.328 seconds)

[image: Launch binder]
 [https://mybinder.org/v2/gh/morganjwilliams/interferences/develop?filepath=docs/source/examples/spectraplot.ipynb]

Download Python source code: spectraplot.py

Download Jupyter notebook: spectraplot.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Tutorials

This page is home to longer examples which incorporate multiple components of
interferences or provide examples of how to integrate these into your own
workflows.

Note

This page is a work in progress. Feel free to request tutorials or examples
with a feature request.

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

API

interferences.table

Functions for working with tables of molecular ions.

	interferences.table.build

	interferences.table.combinations

	interferences.table.intensity

	interferences.table.molecules

	interferences.table.store

interferences.plot

Submodule for visualisation and visual interrogation of mass spectra and potential
interference patterns.

	interferences.plot.ptable

	interferences.plot.ptable

interferences.util

	interferences.util.sorting

	interferences.util.mz

	interferences.util.ptable

	interferences.util.meta

	interferences.util.log

interferences.table.build

	
interferences.table.build.build_table(elements=None, max_atoms=3, sortby=['m_z', 'charge', 'mass'], charges=[1, 2], add_labels=False, threshold=None, window=None, cache_results=True)

	Build the interferences table.

	Parameters

	
	elements (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of elements to include in the table.

	max_atoms (int [https://docs.python.org/3/library/functions.html#int]) – Largest size of molecule to build, in atoms.

	sortby (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list]) – Column or list of columns to sort the final table by.

	charges (list [https://docs.python.org/3/library/stdtypes.html#list] (int [https://docs.python.org/3/library/functions.html#int])) – Ionic charges to include in the model.

	add_labels (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to produce molecule names which are nicely formatted. This takes
additional computation time.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for isotopic abundance for inclusion of low-abudance/non-stable
isotopes.

	mass_window (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Window of interest to filter out irrelevant examples (here a mass window,
which directly translates to m/z window with z=1).

	cache_results (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to store the results on disk for

Todo

Consider options for parellizing this to reduce build time. This would allow
larger molecules to be included.

Invalid molecules (e.g. H{2+}) will currently be present, but will ideally be
filtered out

In some cases, mass peaks will be duplicated, and we want to keep the simplest
version (e.g. Ar[40]+ and Ar[40]2{2+}). We here remove duplicate mass peaks
before sorting (i.e. take the first one, as higher charges would be penalised),
but we could potentially add a check that both contain the same isotopic
components for verificaiton (this would be slow..).

While “m/z” would be an appropriate column name, it can’t be used in HDF indexes.

interferences.table.combinations

Functions for calculating combinations (in the combinatorics sense) of elements and
isotopes into isotope-specified molecular ions.

	
interferences.table.combinations.get_elemental_combinations(elements, max_atoms=3)

	Combine a list of elements into lists of molecular combinations up to a maximum
number of atoms per molecule. Successively adds smaller molecules until down to
single atoms.

	Parameters

	
	elements (list [https://docs.python.org/3/library/stdtypes.html#list]) – Elements or isotopes to combine into molecules.

	max_atoms (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of atoms per molecule. This limits the number of molecules
returned to the generally most relevant simple molecules.

Todo

Check that isotopes supplied to this function are propogated

	
interferences.table.combinations.get_isotopic_combinations(element_comb, threshold=None)

	Take a combination of elements and expand it to generate the potential combinations
of elements.

	Parameters

	
	element_comb (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of elements for which to combine lists of isotopes.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold below which to ignore low-abundance isotopes.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
interferences.table.combinations.component_subtable(components, charges=[1, 2], threshold=None)

	Build a sub-table from a set of elemental components.

	Parameters

	
	components (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of elements to combine in the subtable.

	charges (list [https://docs.python.org/3/library/stdtypes.html#list] (int [https://docs.python.org/3/library/functions.html#int])) – Ionic charges to include in the model.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for isotopic abundance for inclusion of low-abudance/non-stable
isotopes.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

interferences.table.intensity

Functions to threshold, combine and estimate intensities of elements and isotopes
based on their abundances.

	
interferences.table.intensity.isotope_abundance_threshold(isotopes, threshold=None)

	Remove isotopes from a list which have no or zero abundance.

	Parameters

	
	isotopes (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of isotopes to filter.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Minimum isotope abundance for inclusion.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
interferences.table.intensity.get_isotopic_abundance_product(components)

	Estimates the abundance of a molecule based on the abundance of the isotopic
components.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Notes

This is essentially a simplistic activity model.
Isotopic abundances from periodictable are in %, and are hence divded by 100 here.

interferences.table.molecules

Functions for creating, formatting and serialising representaitons of molecules.

	
interferences.table.molecules.components_from_index_value(idx)

	

	
interferences.table.molecules.deduplicate(df, charges=None, multiples=True)

	De-duplicate a dataframe index based on index values and and molecule-multiples.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Dataframe to check the index of.

	charges (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of valid charges for the frame.

	multiples (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to remove molecule-multiples.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
interferences.table.molecules.repr_formula(molecule)

	Get a string representation of a formula which preserves element and isotope
information.

	
interferences.table.molecules.get_formatted_formula(molecule, sorted=False)

	Construct a formatted name for a molecule.

	Parameters

	
	molecule (Formula [https://periodictable.readthedocs.io/en/latest/api/formulas.html#periodictable.formulas.Formula]) – Molecule to name.

	sorted (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether a molecular formula is already sorted, so sorting can
be skipped.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
interferences.table.molecules.get_molecule_labels(df, **kwargs)

	Get labels for molecules based on their composition and charge.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame])

	Return type

	pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]

	
interferences.table.molecules.molecule_from_components(components)

	Builds a Formula [https://periodictable.readthedocs.io/en/latest/api/formulas.html#periodictable.formulas.Formula] from a list of atom or
isotope components.

	Parameters

	components (list [https://docs.python.org/3/library/stdtypes.html#list]) – Atomic, isotope or molecular components to construct an ionic molecule from.

	Return type

	Formula [https://periodictable.readthedocs.io/en/latest/api/formulas.html#periodictable.formulas.Formula]

Todo

	Modify to accept consumption of molecular components (e.g. Fe2O3+)

See also

pyrolite.mineral.transform.merge_formulae()

interferences.table.store

	
interferences.table.store.load_store(path=None, complevel=4, complib='lzo', **kwargs)

	Load the interferences HDF store.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – Path to the store.

	complevel (int [https://docs.python.org/3/library/functions.html#int]) – Compression level option for the HDF store. Uncompressed tables can easily
reach a few hundred MB - this isn’t an issue on a local disk, but can be
limiting for web transfer.

	complib (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which compression library to use.

	Return type

	pandas.HDFStore

	
interferences.table.store.lookup_components(identifier, path=None, key='table', window=None, **kwargs)

	Look up a a list of components from the store based on their identifiers.

	Parameters

	
	identifiers (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifiers for the components to look up.

	path (str [https://docs.python.org/3/library/stdtypes.html#str] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – Path to store to search.

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key for the table within the store.

	window (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Window for indexing along m/z to return a subset of results.

	drop_first_level (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to drop the first level of the index for simplicity.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
interferences.table.store.get_store_index(path, drop_first_level=True, **kwargs)

	

	
interferences.table.store.process_subtables(dfs, charges=None, dump=True, path=None, mode='a', data_columns=['elements', 'm_z', 'iso_abund_product'], complevel=4, complib='lzo', **kwargs)

	Process and optionally dump a set of subtables to file,
appending to the hierarchically-indexed table.

	Parameters

	
	dfs (list`(:class:`pandas.DataFrame)) – Dataframes to dump.

	charges (list [https://docs.python.org/3/library/stdtypes.html#list]) – Charges used to create for the table.

	path (str [https://docs.python.org/3/library/stdtypes.html#str] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – Path to the file to add the table to.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Mode for accessing the HDF file.

	data_columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of columns to create an indexes for to allow query-by-data.

	complevel (int [https://docs.python.org/3/library/functions.html#int]) – Compression level option for the HDF store. Uncompressed tables can easily
reach a few hundred MB - this isn’t an issue on a local disk, but can be
limiting for web transfer.

	complib (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which compression library to use.

	Returns

	De-duplicated concatenated version of new tables.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
interferences.table.store.reset_table(path=None, remove=True, key='table', format='table', complevel=4, complib='lzo', **kwargs)

	Reset or remove a HDF store.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – Path to store.

	remove (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to remove the table from disk, if possible.

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Format to set for the new tables.

	complevel (int [https://docs.python.org/3/library/functions.html#int]) – Compression level option for the HDF store. Uncompressed tables can easily
reach a few hundred MB - this isn’t an issue on a local disk, but can be
limiting for web transfer.

	complib (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which compression library to use.

interferences.plot.ptable

	
interferences.util.ptable.get_periodic_frame()

	Construct a simple periodic table dataframe organised by group and row. Note that
the lanthanides and actinides are each found in a single cell.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

interferences.plot.ptable

Visualisation using of a periodic table.

interferences.util.sorting

	
interferences.util.sorting.get_first_atom(molecule)

	Get the first atom in a molecular formula.

	Parameters

	molecule (Element [https://periodictable.readthedocs.io/en/latest/api/core.html#periodictable.core.Element] | Formula [https://periodictable.readthedocs.io/en/latest/api/formulas.html#periodictable.formulas.Formula]) – Molecule to check.

	Returns

	Element or isotope.

	Return type

	Element [https://periodictable.readthedocs.io/en/latest/api/core.html#periodictable.core.Element]

	
interferences.util.sorting.get_relative_electronegativity(element, reverse=True)

	Get an index of the relative electronegativity of an element, for use in
sorting elements (e.g. for chemical formulae). If a list of elements is supplied,
a list will be returned.

	Parameters

	element (str [https://docs.python.org/3/library/stdtypes.html#str] | periodictable.core.Element [https://periodictable.readthedocs.io/en/latest/api/core.html#periodictable.core.Element] | list [https://docs.python.org/3/library/stdtypes.html#list])

	Return type

	int [https://docs.python.org/3/library/functions.html#int] | list [https://docs.python.org/3/library/stdtypes.html#list]

Note

Electronegativity check uses numbers as these are provided by both
Element and Isotope objects.

interferences.util.mz

	
interferences.util.mz.process_window(window)

	Process the two allowable verions of a mass window (element/isotope and width, or
a low- and high-mass).

	Parameters

	window (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Window parameters to process.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

interferences.util.ptable

	
interferences.util.ptable.get_periodic_frame()

	Construct a simple periodic table dataframe organised by group and row. Note that
the lanthanides and actinides are each found in a single cell.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

interferences.util.meta

	
interferences.util.meta.interferences_datafolder(subfolder=None)

	Returns the path of the interferences data folder.

	Parameters

	subfolder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Subfolder within the interferences data folder.

	Return type

	pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

interferences.util.log

	
interferences.util.log.Handle(logger, handler=<NullHandler (NOTSET)>, formatter='%(asctime)s %(name)s - %(levelname)s: %(message)s', level=None)

	Handle a logger with a standardised formatting.

	Parameters

	
	logger (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger] | str [https://docs.python.org/3/library/stdtypes.html#str]) – Logger or module name to source a logger from.

	handler (logging.Handler [https://docs.python.org/3/library/logging.html#logging.Handler]) – Handler for the logging messages.

	formatter (str [https://docs.python.org/3/library/stdtypes.html#str] | logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]) – Formatter for the logging handler. Strings will be passed to
the logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter] constructor.

	level (str [https://docs.python.org/3/library/stdtypes.html#str]) – Logging level for the handler.

	Returns

	Configured logger.

	Return type

	logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

Development

Development History and Planning

	Changelog

Contributing

	Contributing

	Contributors

	Code of Conduct

Development Installation

To access and use the development version, you can either
clone the repository [https://github.com/morganjwilliams/interferences] or install
via pip directly from GitHub:

pip install git+git://github.com/morganjwilliams/interferences.git@develop#egg=interferences

Tests

If you clone the source repository, unit tests can be run using pytest from the root
directory after installation with development dependencies
(pip install -e .[dev]):

python setup.py test

If instead you only want to test a subset, you can call pytest [https://docs.pytest.org/en/latest/index.html#module-pytest] directly from
within the interferences repository:

pytest ./test/<path to test or test folder>

Changelog

All notable changes to this project will be documented here.

Development

Note

Changes noted in this subsection are to be released in the next version.
If you’re keen to check something out before its released, you can use a
development install.

Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behaviour that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behaviour by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address,
without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional
setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behaviour and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behaviour.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviours that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behaviour may be
reported by contacting the project admins. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org] Version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html.
The Contributor Covenant is released under the
Creative Commons Attribution 4.0 License [http://creativecommons.org/licenses/by/4.0/].

 [image: Creative Commons Licence]
For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq.

Contributing

The long-term aim of this project is to be designed, built and supported by (and for)
the geochemistry community. Requests for features and bug reports
are particularly valuable contributions, in addition to code and expanding the
documentation. All individuals contributing to the project are expected to follow the
Code of Conduct, which outlines community expectations and
responsibilities.

Also, be sure to add your name or GitHub username to the
contributors list.

Note

This project is currently in beta, and as such there’s much work to be
done.

Feature Requests

If you’re new to Python, and want to implement a specific process, plot or framework
as part of interferences, you can submit a
Feature Request [https://github.com/morganjwilliams/interferences/issues/new?labels=enhancement&template=feature-request.md].
Perhaps also check the
Issues Board [https://github.com/morganjwilliams/interferences/issues] first to see if
someone else has suggested something similar (or if something is in development),
and comment there.

Bug Reports

If you’ve tried to do something with interferences, but it didn’t work, and googling
error messages didn’t help (or, if the error messages are full of
interferences.XX.xx), you can submit a
Bug Report [https://github.com/morganjwilliams/interferences/issues/new?labels=bug&template=bug-report.md] .
Perhaps also check the
Issues Board [https://github.com/morganjwilliams/interferences/issues] first to see if
someone else is having the same issue, and comment there.

Contributing to Documentation

The documentation and examples [https://interferences.readthedocs.io] for
interferences are gradually being developed, and any contributions or
corrections would be greatly appreciated. Currently the examples are patchy, and any
‘getting started’ guides would be a helpful addition.

	These pages serve multiple purposes:
	
	A human-readable reference of the source code (compiled from docstrings).

	A set of simple examples to demonstrate use and utility.

	A place for developing extended examples

Contributing Code

Code contributions are always welcome, whether it be small modifications or entire
features. As the project gains momentum, check the
Issues Board [https://github.com/morganjwilliams/interferences/issues] for outstanding
issues, features under development. If you’d like to contribute, but you’re not so
experienced with Python, look for good first issue tags or email the maintainer
for suggestions.

To contribute code, the place to start will be forking the source for interferences
from GitHub [https://github.com/morganjwilliams/interferences/tree/develop]. Once forked,
clone a local copy and from the repository directory you can install a development
(editable) copy via python setup.py develop. To incorporate suggested
changes back to into the project, push your changes to your
remote fork, and then submit a pull request onto
interferences/develop [https://github.com/morganjwilliams/interferences/tree/develop]
or a relevant feature branch.

Note

	See Installation for directions for installing extra
dependencies for development, and Development for information
on development environments and tests.

	interferences development roughly follows a
gitflow workflow [https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow].
interferences/master is only used for releases, and large separable features
should be build on feature branches off develop.

	Contributions introducing new functions, classes or entire features should
also include appropriate tests where possible (see Writing Tests, below).

	interferences uses Black [https://github.com/python/black/] for code formatting, and
submissions which have passed through Black are appreciated, although not critical.

Writing Tests

There is currently a minimal unit test suite for interferences, which guards
against breaking changes and assures baseline functionality. interferences uses continuous
integration via Travis [https://travis-ci.org/morganjwilliams/interferences], where the
full suite of tests are run for each commit and pull request, and test coverage output
to Coveralls [https://coveralls.io/github/morganjwilliams/interferences].

Adding or expanding tests is a helpful way to ensure interferences does what is meant to,
and does it reproducibly. The unit test suite one critical component of the package,
and necessary to enable sufficient trust to use interferences for scientific purposes.

Contributors

This list includes people who have contributed to the project in the form of code,
comments, testing, bug reports, or feature requests.

	Morgan Williams [https://github.com/morganjwilliams]

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 interferences	

 	
 	
 interferences.plot	

 	
 	
 interferences.plot.ptable	

 	
 	
 interferences.table	

 	
 	
 interferences.table.build	

 	
 	
 interferences.table.combinations	

 	
 	
 interferences.table.intensity	

 	
 	
 interferences.table.molecules	

 	
 	
 interferences.table.store	

 	
 	
 interferences.util	

 	
 	
 interferences.util.log	

 	
 	
 interferences.util.meta	

 	
 	
 interferences.util.mz	

 	
 	
 interferences.util.ptable	

 	
 	
 interferences.util.sorting	

Index

 B
 | C
 | D
 | G
 | H
 | I
 | L
 | M
 | P
 | R

B

 	
 	build_table() (in module interferences.table.build)

C

 	
 	component_subtable() (in module interferences.table.combinations)

 	
 	components_from_index_value() (in module interferences.table.molecules)

D

 	
 	deduplicate() (in module interferences.table.molecules)

G

 	
 	get_elemental_combinations() (in module interferences.table.combinations)

 	get_first_atom() (in module interferences.util.sorting)

 	get_formatted_formula() (in module interferences.table.molecules)

 	get_isotopic_abundance_product() (in module interferences.table.intensity)

 	
 	get_isotopic_combinations() (in module interferences.table.combinations)

 	get_molecule_labels() (in module interferences.table.molecules)

 	get_periodic_frame() (in module interferences.util.ptable), [1]

 	get_relative_electronegativity() (in module interferences.util.sorting)

 	get_store_index() (in module interferences.table.store)

H

 	
 	Handle() (in module interferences.util.log)

I

 	
 	
 interferences.plot

 	module

 	
 interferences.plot.ptable

 	module

 	
 interferences.table

 	module

 	
 interferences.table.build

 	module

 	
 interferences.table.combinations

 	module

 	
 interferences.table.intensity

 	module

 	
 interferences.table.molecules

 	module

 	
 interferences.table.store

 	module

 	
 	
 interferences.util

 	module

 	
 interferences.util.log

 	module

 	
 interferences.util.meta

 	module

 	
 interferences.util.mz

 	module

 	
 interferences.util.ptable

 	module, [1]

 	
 interferences.util.sorting

 	module

 	interferences_datafolder() (in module interferences.util.meta)

 	isotope_abundance_threshold() (in module interferences.table.intensity)

L

 	
 	load_store() (in module interferences.table.store)

 	
 	lookup_components() (in module interferences.table.store)

M

 	
 	
 module

 	interferences.plot

 	interferences.plot.ptable

 	interferences.table

 	interferences.table.build

 	interferences.table.combinations

 	interferences.table.intensity

 	interferences.table.molecules

 	interferences.table.store

 	interferences.util

 	interferences.util.log

 	interferences.util.meta

 	interferences.util.mz

 	interferences.util.ptable, [1]

 	interferences.util.sorting

 	
 	molecule_from_components() (in module interferences.table.molecules)

P

 	
 	process_subtables() (in module interferences.table.store)

 	
 	process_window() (in module interferences.util.mz)

R

 	
 	repr_formula() (in module interferences.table.molecules)

 	
 	reset_table() (in module interferences.table.store)

Computation times

00:35.197 total execution time for examples files:

	Spectra : spectra (spectraplot.py)

	00:24.328

	0.0 MB

	Spectra : stemplot (stemplot.py)

	00:07.653

	0.0 MB

	Building Ion Tables (table.py)

	00:03.216

	0.0 MB

Examples

This example gallery includes a variety of examples for using interferences
which you can copy, download and alter, or run on Binder.

Tutorials

This page is home to longer examples which incorporate multiple components of
interferences or provide examples of how to integrate these into your own
workflows.

Note

This page is a work in progress. Feel free to request tutorials or examples
with a feature request.

 _static/broken_example.png

_images/sphx_glr_table_thumb.png

_static/minus.png

_static/no_image.png

_static/file.png

_static/plus.png

_images/sphx_glr_spectraplot_thumb.png

_images/sphx_glr_stemplot_001.png
Estimated Relative Intensity

5 8 8 8 g g & &
111188 88§

S

1697+

I

[s pespyEs

hd

1681+

168.90

168.92 168.94

168.96

168.98

_images/sphx_glr_spectraplot_001.png
+
. o
= &
3
Y| 9

- - T - T N S A S

= 4 4 4 89 9 8 8 2

aisua1ul 2Anejay patewnsa

26.00 26.01 26.02 26.03

25.99

_images/sphx_glr_spectraplot_002.png
Estimated Relative Intensity

Estimated Relative Intensity

558 58 58 5 & & &
1793788 %8¢%§

S

10°
102
10!
100
1071
1072
1072
107*

107°

ratio=0.0 ratio=0.2
>
LIS TV Z LIS TV
7 g
/ €
s
B150*+ 2 10, 171-»—
3
nglsy £ 1BISN*
. 3 .
z
3 & BE+
ratio=1.5
2z
Z LIS TV
H ,
2 /
g
& B16
3
£ SENES
g /
£
& bt

2599 26.00 26.01 26.02 26.03

2599 26.00 26.01 26.02 26.03

_images/sphx_glr_stemplot_thumb.png

nav.xhtml

 Table of Contents

 		
 interferences

